Teoria dei Polimeri e loro caratterizzazione
Impieghi

Circa il 40% del volume totale di materie plastiche è impiegato nel settore dell'imballaggio, ma questi materiali sono utilizzati in molti altri settori quali l'edilizia, i trasporti, l'elettronica.

Le caratteristiche che maggiormente hanno contribuito a determinare il successo dei materiali polimerici sono la leggerezza, la capacità di isolamento, l'inerzia chimica ed ambientale, la facile processabilità.

Vantaggi: peso

La densità di un materiale è la proprietà che permette di quantificare la sua leggerezza:

\[\rho_{\text{Polimeri}} = 1 \, \text{g/cm}^3 \ll \rho_{\text{acciaio, vetro, ceramica}} \]

a parità di volume di materiale utilizzato ↓ peso del manufatto

Proprietà: densità = \[\frac{\text{massa}}{\text{volume}} \left(\frac{\text{g}}{\text{cm}^3} \right)\]
Vantaggi: inerzia chimica e processabilità

I polimeri sono in generale materiali chimicamente inerti, virtualmente immuni alla corrosione e con buone caratteristiche di resistenza ai solventi, alle radiazioni solari, ecc.

Economicità e versatilità dei processi produttivi (trasformazione dei polimeri in manufatti).
Le caratteristiche principali delle tecnologie di trasformazione dei materiali polimerici sono la disponibilità di processi di trasformazione diversi, a seconda dei requisiti dei manufatti e delle proprietà dei materiali, la grande versatilità di forme ottenibili ed i costi di lavorazione relativamente bassi.

*inerzia chimica e ambientale
*facilita' di trasformazione e versatilita' nelle forme ottenibili
*grande varieta' di tipi
Svantaggi: scarse doti meccaniche per impieghi strutturali

\downarrow modulo elastico $E \Rightarrow$ rigidezza dei manufatti.

Per i materiali polimerici il modulo E risulta essere dell’ordine di qualche GPa, di due ordini di grandezza inferiore rispetto a quello dell’acciaio.

A parità di geometria e tipo di sollecitazione applicata:

un carico deve essere 100 volte più piccolo perché un manufatto, subisca la stessa deformazione quando venga realizzato in materiale polimerico piuttosto che in acciaio.
Microstruttura dei polimeri

Osservando un generico manufatto realizzato in materiale polimerico, passando attraverso ingrandimenti progressivamente più spinti, arriviamo ad individuare la sua unità molecolare, detta comunemente “catena polimerica”
Come si producono i polimeri?

I polimeri sono normalmente ottenuti per sintesi chimica a partire dal petrolio.

Si passa attraverso processi di raffinazione e di manipolazione per ottenere le molecule costituenti una catena polimerica.

Va osservato che, di tutto il petrolio consumato nel mondo, soltanto il 4% circa viene utilizzato per la produzione dei polimeri sintetici, mentre il maggiore consumo si ha nel settore dei trasporti e del riscaldamento (83%).
Ciclo di vita di un materiale polimerico

I stadio

ottenimento dei monomeri (sostanze a basso peso molecolare normalmente allo stato gassoso o liquido), a partire dal petrolio greggio.

Il stadio

A partire da queste sostanze, la sintesi del polimero (polimerizzazione) viene effettuata in opportuni impianti chimici.

Oss: la pericolosità dei materiali polimerici è di solito prevalentemente confinata ai siti produttivi, in quanto la sostanza in sé è stabile e non nociva nelle normali condizioni di impiego.
Stabilizzazione

Il polimero non sempre è utilizzabile direttamente allo stato puro.
Molti polimeri devono essere "stabilizzati" nei riguardi delle sollecitazioni ambientali (raggi ultraviolettì, temperatura, umidità, ecc.) oppure una o più proprietà non sono ad un livello adeguato per le applicazioni previste.

Compounding

E' quindi molto frequente che prima della loro commercializzazione essi vengano sottoposti ad una operazione di modifica per miscelazione con opportune sostanze dette "additivi" (compounding).

Il polimero modificato con l'aggiunta di additivi viene detto “materiale polimerico”

Trasformazione

Il materiale polimerico commerciale si trova normalmente sotto forma di polvere o di granulo (spesso indicato con la parola inglese “pellet”) e deve essere quindi lavorato opportunamente per ottenere un manufatto.

Questa operazione di lavorazione può includere diverse fasi di omogeneizzazione e formatura, di solito a caldo, e viene detta “trasformazione”.

Al termine del suo ciclo di vita utile, il manufatto prodotto viene infine dismesso.
A seguito di questo processo di dismissione il materiale può essere indirizzato a diversi processi, a seconda del tipo di materiale e delle strategie di recupero messe in atto nella comunità.
Classi di Polimeri

Il termine Polimero significa molte unità ed è corrisponde proprio a ciò che un polimero è: una lunga catena (macromolecola) di una, due o occasionalmente più unità di piccole molecole identiche legate assieme.

- La maggior parte dei polimeri sintetici sono vecchi di ~100 anni ma molti sono però scoperte recenti (<50 anni).

- Maggiori classi:
 - plastiche
 - gomme
 - rivestimenti
 - adesivi

- polimeri naturali
 - proteine
 - acidi nucleici
 - polisaccaridi...

Classificazione dei Polimeri

I polimeri possono essere classificati:

1) in base alla loro **origine**:
 - Polimeri Naturali (polisaccaridi, proteine..);
 - Polimeri Sintetici (plastiche, resine, gomme..);

2) in base alla **struttura**:
 - Omopolimeri:
 - Copolimeri:
 - Eteropolimeri:

3) in base al **tipo di polimerizzazione**:
 - Polimeri di condensazione:
 - Polimeri di addizione (ioniche o radicaliche):
 - Polimeri di coordinazione.

4) in base alle **proprietà termiche**:
 - Polimeri Termoplastici:
 - Polimeri Termoindurenti.
La macromolecola

E' costituita da una lunga sequenza di legami covalenti (forti)

Es: Cloruro di polivinile

unità monomerica: cloruro di vinile

Lo stato liquido è garantito dalla possibilità di scorrimento relativo tra le macromolecole (catene).

Il legame tra le une e le altre, è per sua natura, debole.

Maggiore sarà la lunghezza della macromolecola, maggiore tendenza avrà questa a disposi in maniera casuale nello spazio (forma aggrovigliata).

I movimenti di scorrimento relativi tra le macromolecole aggrovigliate diminuiscono al crescere della lunghezza della catena, poiché queste tenderanno a bloccarsi reciprocamente (rif. dislocazioni nei metalli).

Spingendo il fenomeno al limite, la sostanza diviene macroscopicamente rigida (-> solido), pur conservando (a meno di certi casi) la struttura del liquido (assenza reticolo cristalino)
MOLECOLE BIOLOGICHE

PROTEINE

AMIDO

Fig. 30.3 - Struttura a strati cellulare (disposizione beta), proposta da Pauling per la fibroina della seta: molecole composte per far posso a catene laterali di piccole e medie dimensioni; catene adiacenti con disposizione antiparallela; numerosi legami d'idrogeno tra catene adiacenti.

Fig. 30.4 - Struttura ad a-elica, proposta da Pauling per l'alpha-keratina, che lascia il posto a catene laterali di grosse dimensioni; elica destrorse con 1/4 anellati ad ogni giro; legame d'idrogeno all'interno della catena.
TIPI DI POLIMERI

- OLEFINICI
 \[\left[\text{CH}_2\text{-CH}_2 \right]_n \quad \left[\text{CH}_2\text{-CH-CH}_3 \right]_n \]

- VINILICI
 \[\left[\text{CH}_2\text{-CH-Cl} \right]_n \quad \left[\text{CH}_2\text{-CH-CN} \right]_n \quad \left[\text{CH}_2\text{-CH-Ph} \right]_n \]

- DIENICI
 \[\left[\text{CH}_2\text{-CH=CH-CH}_2 \right]_n \quad \left[\text{CH}_2\text{-CH=CH-CH}_2 \right]_n \]

- POLISTERI
 \[\left[\text{O-CH}_2\text{-CH}_2\text{-O-C-} \right]_n \quad \text{C} \quad \text{C} \]

- POLIAMMIDI
 \[\left[\text{NH} \left(\text{CH}_2 \right)_6 \text{NH-C-} \left(\text{CH}_2 \right)_4 \text{C} \right]_n \]

- POLICARBONATI
 \[\left[\text{C} \quad \text{C} \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{O-C-O} \right]_n \]

- POLIURETANI
 \[\left[\text{C} \quad \text{N} \quad \text{H} \left(\text{CH}_2 \right)_6 \text{NH-C-} \left(\text{CH}_2 \right)_6 \text{O} \right]_n \]

 \[\left\{ \begin{array}{c}
 \text{OCN-} \left(\text{CH}_2 \right)_6 \text{NCO} \\
 + \quad \text{HO-} \left(\text{CH}_2 \right)_6 \text{OH}
 \end{array} \right\} \]
• POLIUREE \[\text{NH}-(\text{CH}_2)_6\text{NH}-\text{C}]_n \]

\[= \left\{ \text{H}_2\text{N}-(\text{CH}_2)_6\text{NH}_2 + \text{Cl}--\text{Cl} \right\} \]

• POLIETERI \[\text{CH}_2-\text{O}]_n \]

• POLITIOETERI \[\text{[S]}_n \]

• POLIANIDRIDIDI \[\text{[C}--\text{C}-\text{O]}_n \]

• POLIPEPTIDI \[\text{[NH--C--CH]}_n \]
Thermoplastic:

These plastics become soft when exposed to sufficient heat and harden when cooled, no matter how often the process is repeated.

Thermosetting:

The plastics materials belonging to this group are set into permanent shape when heat and pressure are applied to them during forming. Reheating will not soften these materials.

Figure 1.17 Characteristics of thermoplastics (TPs) and thermosets (TSs).
Materiali polimerici - Classificazione

Polimeri termoplastici - thermoplastics (TPs)
Polimeri termoindurenti- thermosets (TSs)

Legami covalenti: 350-450 kJ/mol
Legami secondari (forze di van der Waals, interazioni dipolari, legami a idrogeno): < 50 kJ/mol
Polimeri termoplastici: polimeri che possono essere ripetutamente rammolliti (plastificati, "fusi", "liquefatti") per riscaldamento e solidificati ("induriti", "consolidati") per raffreddamento

Caratteristiche:
- Solubilità in solventi specifici
- La "temperatura di rammollimento" varia fortemente in funzione del tipo e del "grado" di polimero
- Temperature elevate possono provocare reazioni di degradazione/decomposizione e combustione
- Generalmente durante la trasformazione (processing) non avvengono modifiche chimiche
- Elevata resistenza all'impatto
- Migliore "processabilità"
- Adattabilità a geometrie complesse
Polimeri termoindurenti: polimeri che subiscono una modifica chimica (reticolazione, *crosslinking*) durante il processo di trasformazione, diventando permanentemente infusibili ed insolubili.

Caratteristiche:
- Dopo la “reticolazione” il materiale non può fluire
- A temperature elevate si può avere degradazione ma mai fusione (plastificazione)
Polimeri termoindurenti: densità di reticolazione ed effetto sulle proprietà meccaniche

Figure 2 A lightly cross-linked network (i) and a highly cross-linked network (ii).

Figure 1.19 The effect of distance between TS cross-linked sites on compressive properties.
<table>
<thead>
<tr>
<th>Name</th>
<th>Trade names</th>
<th>Properties</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol-formaldehyde resins</td>
<td>Bakelite, Plenco, Durite</td>
<td>Good chemical, thermal and flame resistance</td>
<td>Electrical mouldings, appliance handles, household fittings, adhesives, laminates</td>
</tr>
<tr>
<td>Epoxy resins</td>
<td>Araldite, Epon, Epikote</td>
<td>Tough, good adhesion, excellent chemical resistance, good electrical properties</td>
<td>Adhesives, protective coatings, laminates, building and construction, electrical and electronic components</td>
</tr>
<tr>
<td>Amino resins</td>
<td>Avisco, Plaskon</td>
<td>Rigid, strong, good impact resistance</td>
<td>Kitchenware, flooring, particleboard, plywood</td>
</tr>
<tr>
<td>Polyester resins</td>
<td>Laminac, Aropol, Baygal</td>
<td>Low viscosity, inexpensive</td>
<td>Automative engineering, construction, boat building</td>
</tr>
<tr>
<td>Polyurethanes</td>
<td>Lycra, Elastane</td>
<td>Burn easily producing toxic fumes, good abrasion and chemical resistance, very high elasticity, excellent abrasion, adhesion and impact properties</td>
<td>Furniture, tyre treads, clothing, floor and kitchen surfaces</td>
</tr>
</tbody>
</table>
Elastomeri: polimeri naturali o sintetici caratterizzati da proprietà gommose (rubber like) quali elevata estendibilità e flessibilità

- Elastomeri termoindurenti (gomma naturale *Hevea Brasiliensis*)
- Elastomeri termoplastici

![Diagram of strength and elasticity of different materials.](Image)
Copolimeri: polimeri formati dalla polimerizzazione di due o più monomeri diversi

Alternating Copolymers:

Random Copolymers:

Block Copolymers:

Graft Copolymers:

Copolimero a diblocchi A-B
AAAAAAAAAAAAAAAAABBBBBBBBBBBBB

Copolimero a triblocchi A-B-A
AAAAAAAAAAABBBBBBBBBBBBBBBBBAAAA

Copolimero a blocchi segmentato (A-B)n
AAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBAAAAABBBBB
Tipi di copolimeri:

- **Alternanti**

- **Casuali**

- **A blocchi**

- **Graffato**

<table>
<thead>
<tr>
<th>Name</th>
<th>Trade names</th>
<th>Properties</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styrene–acrylonitrile (SAN)</td>
<td>Luran</td>
<td>Tough, good chemical resistance, good mechanical properties, rigid, easily processed</td>
<td>Automotive, medical and household applications</td>
</tr>
<tr>
<td>Styrene–butadiene rubber (SBR)</td>
<td>Polysar</td>
<td>Tough, good wear resistance, inexpensive, poor oil resistance</td>
<td>Tyres, shoe soles, flooring, hoses</td>
</tr>
<tr>
<td>Acrylonitrile–butadiene (NBR)</td>
<td>Nitrile, Chemigum, Krynak</td>
<td>Good oil and abrasion resistance</td>
<td>Seals, hoses, shoe soles</td>
</tr>
</tbody>
</table>
Grado di polimerizzazione e PM

Polivinilici

\[\text{Grado di polimerizzazione} \ n \]

Calcolo del grado di polimerizzazione \(n \)

Il cloruro di polivinile (\(\text{C}_2\text{H}_3\text{Cl} \)) è polimerizzato in modo da avere peso molecolare medio pari a 72130 amu (unità di massa atomica). Qual è il suo grado di polimerizzazione?

Il monomero ha PM: \(2 \cdot (12) + 3 \cdot (1) + 35.5 = 62.5 \) amu

\[N = \frac{72130}{62.5 \text{ amu}} = 1154 \] (numero medio di monomeri per ogni molecola di polimero)
Grado di polimerizzazione

Il grado di polimerizzazione (DP) è uno dei parametri più importanti per determinare le proprietà fisiche di un polimero; esso è definito come il numero di monomeri (Mer) per catena lineare di polimero. Esso è legato al peso molecolare della catena (Mp) nel seguente modo:

\[Mp = DP \times M_{\text{Mer}} \]

Con \(M_{\text{Mer}} \) peso molecolare del monomero

Secondo il loro grado di polimerizzazione i polimeri si dividono in: oligomeri (2 < DP < 10); bassi polimeri (10 < DP < 100); medi polimeri (100 < DP < 1000); alti polimeri (DP > 1000).
Grado di polimerizzazione

All'aumentare del grado di polimerizzazione si ha un incremento della temperatura di rammollimento (T_r) con conseguente miglioramento delle proprietà meccaniche del materiale (e diminuzione della lavorabilità).

<table>
<thead>
<tr>
<th>DP</th>
<th>M</th>
<th>T_r (°C)</th>
<th>Aspetto fisico</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1000</td>
<td>37,5</td>
<td>oleoso</td>
</tr>
<tr>
<td>280</td>
<td>4000</td>
<td>93</td>
<td>ceroso</td>
</tr>
<tr>
<td>500</td>
<td>7000</td>
<td>98</td>
<td>solido malleabile</td>
</tr>
<tr>
<td>850</td>
<td>12000</td>
<td>104</td>
<td>solido rigido</td>
</tr>
<tr>
<td>1500</td>
<td>21000</td>
<td>110</td>
<td>solido rigido</td>
</tr>
<tr>
<td>2700</td>
<td>38000</td>
<td>112</td>
<td>solido rigido</td>
</tr>
</tbody>
</table>
PESI MOLECOLARI di MATERIALI POLIMERICI

- I polimeri (sintetici) sono costituiti da macromole di lunghezza diversa; non è possibile individuare un valore unico di peso molecolare
- Valori medi
- Distribuzione pesi molecolari

Peso molecolare medio numerale (numerico)

\[
\overline{M}_n = \frac{\sum N_x M_x}{\sum N_x} \quad M_x = x \cdot M_o
\]

Peso molecolare medio ponderale

\[
\overline{M}_w = \frac{\sum N_x M_x^2}{\sum N_x M_x^2} = \frac{\sum W_x M_x}{\sum W_x} \quad W_x = N_x M_x
\]

Peso molecolare z-medio

\[
\overline{M}_z = \frac{\sum N_x M_x^3}{\sum N_x M_x^2}
\]

- \(M_x\) = massa molare dell'\(x\)-mero
- \(N_x\) = numero di moli dell'\(x\)-mero
- \(W_x\) = massa dell'\(x\)-mero
- \(x\) = grado di polimerizzazione dell'\(x\)-mero
- \(M_o\) = massa molare dell'unità ripetitiva
Sintesi dei polimeri

Il processo chimico mediante il quale i monomeri si uniscono tra loro per trasformarsi in un polimero si chiama polimerizzazione.

I principali metodi di polimerizzazione sono tre:
• la condensazione;
• l'addizione;
• la polimerizzazione per coordinazione.
SINTESI DELLE MACROMOLECOLE

Classificazione sulla base del prodotto di reazione

POLIADDIZIONE: porta alla formazione di polimeri detti di addizione nei quali la formula dell’unità ripetitiva è identica a quella del monomero di partenza.

Es: \(n \text{ CH}_2=\text{CH}_2 \rightarrow [\text{-CH}_2\text{-CH}_2\text{-}]_n \quad \text{PE} \)

POLIONDENSAZIONE: porta alla formazione di polimeri nei quali l’unità ripetitiva può o no contenere un numero minore di atomi rispetto ai monomeri di partenza.

Es:

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{CH}_2 & \quad \text{NH}_2 & + & \quad \text{HOOC} & \quad \text{CH}_2 & \quad \text{COOH} \rightarrow \\
\left[\begin{array}{c}
\text{H} \\
\text{N} & \quad \text{CH}_2 & \quad \text{N} \\
& \quad \text{CH}_2 & \quad \text{CH}_2 & \quad \text{C} \\
& \quad \text{CH}_2 & \quad \text{CH}_2 & \quad \text{C}
\end{array} \right]_n & \quad \text{PA 6,6 CRISTALLINO} & + & \quad \text{H}_2\text{O}
\end{align*}
\]
Polimerizzazione per condensazione

La condensazione (anche detta liquefazione) è la transizione di fase dalla fase gassosa alla fase liquida di una sostanza.

La catena polimerica si ottiene per condensazione di singole unità monomeriche con successiva perdita di piccole molecole (acqua alcoli...)

\[R_1-\text{NH}_2 + R_2\text{COOH} \rightarrow R_2\text{CONHR}_1 + \text{H}_2\text{O} \]

Appartengono a questo tipo di polimeri le poliammidi (nylon), le proteine (enzimi, emoglobina...), i polisaccaridi (amido, cellulosa...), i poliesteri (Dacron).

Con tale tipo di polimerizzazione difficilmente si raggiungono pesi molecolari elevati, quindi le proprietà meccaniche del materiale sono scadenti.

Unica eccezione è il nylon che riesce a formare catene molto lunghe e quindi possiede proprietà meccaniche superiori.
Polimerizzazione per addizione

I polimeri di addizione si ottengono per addizione di monomeri insaturi attraverso meccanismi radicalici o ionici di diverso tipo.

Appartengono a questo tipo di polimeri il polietilene, il polipropilene, il polibutadiene.

\[
\begin{align*}
\text{CH}_2=\text{CH}_2 & \quad \rightarrow \quad (\text{CH}_2-\text{CH}_2-)_n \\
\text{Polietilene} & \\
\text{CH}_2=\text{CH} & \quad \rightarrow \quad (\text{CH}_2-\text{CH}-)_n \\
\text{Polipropilene} & \\
\text{CH}_2=\text{CH}-\text{CH}=\text{CH}_2 & \quad \rightarrow \quad (\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-)_n \\
\text{Polibutadiene} &
\end{align*}
\]

Con questo metodo di polimerizzazione è facilmente controllabile il peso molecolare della struttura che si vuole ottenere e quindi è possibile progettare materiali di volute proprietà meccaniche.

Polimerizzazione di coordinazione

Questo tipo di polimerizzazione avviene utilizzando un particolare tipo di catalizzatori: i catalizzatori di Natta-Ziegler (premi Nobel nel 1963). Con tale processo è possibile guidare la stechiometria della reazione, ottenere catene lineari, materiali con elevata cristallinità, alto punto di fusione, maggiore densità e resistenza meccanica.

Viene chiamato catalizzatore un composto in grado di modificare la velocità di una reazione chimica senza essere consumato alla fine della reazione stessa. Lo schema di intervento di un catalizzatore C nella reazione fra due composti A e B è:

\[A + C \rightarrow AC \]
\[AC + B \rightarrow AB + C \]

La reazione netta è sempre \[A + B \rightarrow AB \] , mentre C viene rigenerato alla fine di ogni ciclo e non si consuma.

L'effetto di un catalizzatore è quello di rendere possibili reazioni che in condizioni normali non avverrebbero: (es. in biochimica gli enzimi aumentano la velocità delle reazioni anche di 1020 volte).
Classificazione sulla base del meccanismo di crescita

POLIMERIZZAZIONE A CATENA: sono reazioni molto veloci con formazione quasi immediata del polimero ad alto peso molecolare. Comprendono:
- una reazione di inizio, in cui si forma il centro attivo su cui avvengono le successive reazioni di addizione di monomero;
- reazioni di propagazione
- reazioni di terminazione

In funzione del centro attivo si possono avere reazioni:
- RADICALICHE
- ANIONICHE
- CATIONICHE
POLIMERIZZAZIONE A STADI: sono processi nei quali sono coinvolti monomeri funzionali che reagendo formano molecole a peso molecolare gradualmente crescente, in cui di volta in volta si ripristinano gli stessi gruppi funzionali terminali.

Alti pesi molecolari si ottengono solo alla fine della reazione, ad alte conversioni.
Stato fisico dei polimeri

Lo stato fisico di un polimero dipende dalla posizione e dalla mobilità delle catena che lo costituiscono.

Ogni singolo filamento che costituisce il polimero è caratterizzato da due aspetti:

1) Struttura della catena:
 - lineare (catena estesa)
 - ripiegata (folden chain)
 - a gomitolo

2) Tipo di interazione esistente tra le catene:
 - forze di Van der Waals
 - dipolo-dipolo
 - ioniche
 - ...

`Catena estesa`

`Catena ripiegata “folded chain”`

Debora Puglia
Stato fisico dei polimeri

I polimeri possono avere struttura amorfa oppure cristallina.

Lo stato amorfo è caratterizzato da una struttura irregolare (disposizione disordinata delle molecole) mentre lo stato cristallino risulta essere molto ordinato (disposizione geometricamente ordinata dei filamenti nelle celle del reticolo).

La densità del solido amorfo, a causa degli spazi vuoti, è inferiore a quella dei solidi cristallini, inoltre il materiale amorfo è più fragile e meno resistente del corrispondente materiale cristallino.
Effetto della temperatura

I polimeri subiscono sostanziali variazioni delle loro proprietà in funzione della temperatura.
In particolare la temperatura influenza lo stato fisico dei materiali. Mentre nei materiali cristallini alla temperatura di fusione si ha il passaggio diretto dallo stato solido allo stato liquido, nei materiali amorfi ciò non avviene a causa della ridotta mobilità tra le molecole.
Effetto della temperatura

La transizione vetrosa T_g costituisce il passaggio da uno stato parzialmente rigido (vetroso) e uno più malleabile (stato gommoso).

La transizione di rammollimento T_r o direttamente rammollimento rappresenta invece il passaggio dallo stato gommoso a quello liquido.
Effetto della temperatura

Mentre per un polimero parzialmente cristallino le proprietà meccaniche variano di poco durante la transizione vetrosa, lo stesso non può essere detto nel caso di un polimero amorfo.

Solo superando la temperatura di fusione T_m si ha una diminuzione delle proprietà meccaniche di un materiale cristallino.
Effetto della temperatura

Nel caso di un polimero reticolato non esistono la transizioni vetrosa e di rammollimento e non ci sono sensibili variazioni meccaniche all’aumentare della temperatura (fino al limite della stabilità chimica).

Per ogni polimero esiste infine una temperatura limite di stabilità chimica (TL) oltre la quale il polimero subisce trasformazioni irreversibili e degradazioni.
Diagrammi E-T
La variazione di mobilità delle catene polmeriche con la temperatura si traduce in una dipendenza della rigidità del materiale, ossia del suo modulo elastico (E) dalla temperatura.

Per $T \approx T_g + 100^\circ C$, $E \downarrow \Rightarrow$ non si parla più di rigidità del materiale (il materiale può essere considerato un fluido).

Differenza: E_{vetroso} e E_{gommoso} pari a circa 3 ordini di grandezza.
Influenza del M_w sulla temperatura di fluidificazione

La temperatura alla quale il materiale fluidifica ($T_{\text{fluidificazione}}$) aumenta all’aumentare della lunghezza delle catene (peso molecolare).

Il peso molecolare, infatti, influenza sulla possibilità di formazione e sulla stabilità termica di punti di reticolazione fisica, associati ad “agganciamenti” tra le catene, detti “entanglements”.

Per un peso molecolare infinitamente grande (polimero reticolato) il polimero perderebbe la possibilità di fluire
All’aumentare della temperatura (per $T > T_g$) $\Rightarrow E = \text{cost} \ \text{fino alla temperatura}$

di degradazione del polimero

Il **grado di reticolazione** di un polimero reticolato può essere correlato con la densità numerica dei **legami intermolecolari** (numero di punti di reticolazione per unità di volume).

Un aumento del grado di reticolazione comporta aumento del modulo del materiale nel campo di temperature superiori alla temperatura di transizione vetrosa, in relazione ad una diminuzione di libertà di movimento a lungo raggio dovuta alla formazione di reticoli.

Per $T < T_g \Rightarrow E$ non è invece influenzato dal grado di reticolazione.

Anche T_g non è molto influenzata dal grado di reticolazione (moderato aumento)
Polimero vetroso o gommoso?

Dipende essenzialmente dalla temperatura di transizione vetrosa di un polimero:

se $T_g > T_{amb} \Rightarrow$ polimero vetroso

Es: Il polistirene (PS), il polimetilmetacrilato (PMMA), il polivinilchloruro (PVC), il policarbonato (PC)

se $T_g < T_{amb} \Rightarrow$ polimero gommoso

Es: Il copolimero butadiene – co – stirene (SBR)

<table>
<thead>
<tr>
<th>Polimero</th>
<th>T_g (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>polistirene (PS)</td>
<td>100</td>
</tr>
<tr>
<td>polimetilmetacrilato (PMMA)</td>
<td>105</td>
</tr>
<tr>
<td>polivinilchloruro (PVC)</td>
<td>80</td>
</tr>
<tr>
<td>policarbonato (PC)</td>
<td>150</td>
</tr>
<tr>
<td>polibutadiene-co-stirene (SBR)</td>
<td>-50</td>
</tr>
</tbody>
</table>
Valori sperimentali di E al variare di T (polimeri amorfi)

Sono riportati andamenti di 4 polimeri amorfi:

- polistirene (PS);
- polimetilmetacrilato (PMMA);
- polivinilcloruro (PVC);
- policarbonato (PC);

Le T_g sono tutte superiori alla temperatura ambiente (stato vetroso).

↑ temperatura per $T \geq T_g \Rightarrow E$ si riduce (valori compresi tra 1 MPa e 4 MPa propri dei materiali gommosi).

L’estensione del plateau al di sopra della T_g dipende, come visto precedentemente dal peso molecolare di ciascun polimero.
Valori sperimentali di E al variare di T (polimeri amorfi)

I valori sperimentali di modulo temperatura di due polimeri amorfi, gomma naturale (NR), gomma poliuretanica (PUR) sono riportate nel grafico.

Le T_g sono inferiori alla temperatura ambiente.

I moduli sono dell’ordine del MPa ed i materiali a temperatura ambiente sono nello stato gommoso.
E’ possibile stabilire il campo di temperature di utilizzo dei polimeri amorfi, in relazione ai requisiti della particolare applicazione considerata.

Distinguiamo tra:
- polimeri amorfi *non reticolati (termoplastici)*
- polimeri amorfi reticolati (*termoindurenti*)

L’impiego dei polimeri termoplastici in applicazioni strutturali è limitato allo stato vetroso (T_max utilizzo < T_g)

Per T > T_g, i polimeri termoplastici possono essere utilizzati solo in applicazioni non strutturali ⇒ non mantengono la propria forma sotto l’applicazione di un carico (comportamento plastico o fluido).

T_min minima di utilizzo dipende da un eccessivo infragilimento del materiale alle basse temperature (associato alle temperature di transizione secondaria T_p, T_y, ecc.).
Correlazioni modulo-microstruttura dei materiali polimerici
Cristallinità e peso molecolare
Correlazioni modulo-microstruttura dei materiali polimerici
Andamento modulo-temperatura (copolimeri alternati, copolimeri random, miscele omogenee)
Correlazioni modulo-microstruttura dei materiali polimerici
Andamento modulo-temperatura (copolimeri a blocchi, copolimeri ad innesto, miscele eterogenee)
Correlazioni modulo-microstruttura dei materiali polimerici
Andamento modulo - temperatura (effetto del grado di reticolazione)
Correlazioni modulo-microstruttura dei materiali polimerici
Cristallinità e peso molecolare
DIAGRAMMA TTT
- Il diagramma è basato sui cambiamenti fenomenologici che si hanno durante la cura, come la gelazione, la vetrificazione, la cura completa e la degradazione.

Tre sono le temperature critiche che sono individuabili in questa schematizzazione:

- \(T_{g_r} \) = temperatura di transizione vetrosa del materiale non reagito;
- \(T_{g_{gel}} \) = temperatura in cui coincidono gelazione e vetrificazione;
- \(T_{g_\infty} \) = temperatura di transizione vetrosa del materiale completamente reticolato

- \(T < T_{g_r} \): la reazione ha luogo allo stato vetroso ed è perciò lenta, è una temperatura al di sotto della quale non si ha una significativa reazione del materiale di partenza non curato in un tempo ragionevole, e rappresenta quindi la “storage temperature” della miscela non curata.

- Tra \(T_{g_r} \) e \(T_{g_{gel}} \), la resina liquida reagirà senza gelare finché la sua temperatura di transizione vetrosa sempre crescente diventerà coincidente con la temperatura di cura, e comincerà la vetrificazione, e la reazione diventa controllata in diffusione: la \(T_{g_{gel}} \) è quindi la temperatura di cura alla quale vetrificazione e gelazione avvengono contemporaneamente, e la più bassa temperatura alla quale la resina gela mentre la reazione è ancora sotto controllo chimico.
- A temperature tra $T_{g_{gel}}$ e $T_{g_{\infty}}$, il liquido viscoso diventa un fluido viscoelastico, poi una gomma, ed infine un vetro. La gelazione precede la vetrificazione, si forma un reticolo gommoso che cresce finché la temperatura di transizione vetrosa coincide con la temperatura di cura, dove la reazione diventa controllata in diffusione.

- A temperature superiori a $T_{g_{\infty}}$, il termoindurente resta allo stato gommoso dopo la gelazione, a meno che non si manifestino altre reazioni, come la degradazione termica o la reticolazione ossidativa: per sistemi ad alta T_{g}, si possono avere cura e decomposizione contemporaneamente.
L’impiego dei polimeri amorfi reticolati in applicazioni strutturali è invece possibile anche nello stato gommoso, ossia per temperature superiori alla temperatura di transizione vetrosa ed è limitato superiormente soltanto dalla degradazione termica del polimero.

Nello stato vetroso

\[T_{\text{max}} \approx T_g - 20 \, ^\circ\text{C} \]

\[T_{\text{min}} \text{ è determinata dall'eccessivo infragilimento del materiale} \]

Nello stato gommoso

\[T_{\text{min}} \approx T_g + 20 \, ^\circ\text{C} \]

\[T_{\text{max}} \text{ è determinata dalla degradazione del materiale} \]
Principali polimeri amorfi: gli elastomeri

Gomme o elastomeri sono i materiali polimerici con $T_g < T_{amb}$, caratterizzati da un comportamento “elastico” con valori di modulo a temperatura ambiente dell’ordine del MPa e recupero totale e istantaneo della deformazione dopo rimozione del carico applicato.

Questo tipo di comportamento può essere ottenuto con due tipi di struttura chimica differente:

- polimeri amorfi reticolati chimicamente;
- copolimeri a blocchi non reticolati (*gomme termoplastiche*)

La temperatura di transizione vetrosa limita inferiormente il campo di temperature di applicazione delle gomme:

- per temperature inferiori alla T_g, infatti, il materiale diventa progressivamente sempre più rigido e riduce la sua deformazione a rottura.

La temperatura di impiego è invece limitata superiormente dalla degradazione termica del materiale.
Uno dei più comuni metodi di reticolazione è il cosiddetto **processo di “vulcanizzazione delle gomme”** utilizzato per la reticolazione di polimeri (cosiddetti “insaturi”), che contengono doppi legami nella catena molecolare, come ad esempio nel poli-isoprene (gomma naturale).

La vulcanizzazione comporta il riscaldamento del polimero in presenza di Zolfo (S): si ha rottura dei doppi legami e formazione di ponti zolfo tra due distinte catene.

![Diagramma della vulcanizzazione di poli-isoprene](image.png)
PE a T ambiente è sopra la Tg ma è cristallino: copolimero con PE porta alla formazione di gomma EPR

S = 0.5 - 5 phr di gomma in T = 120 - 180°C (lenta)
+ acceleratore (mercaptobenzotriazolo) + attivatore (stereato di zinco) per gomme con siti di insaturazione
- per gomme senza siti di insaturazione (PE-co-PP) la reticolazione si fa con perossidi (cumil perossido e BPO) senza uso di zolfo

ELASTOMERI TERMOPLASTICI (TPU)

- non hanno necessità di reticolazioni chimiche
- processati ad alte T come i termoplastici ma in raffreddamento si comportano come elastomeri: “crosslinking fisici”

ABA tri-block

A omopolimero vetroso
B omopolimero gommoso

Polistirene – polidiene
- polistirene

(a T ambiente: Matrice gommosa + fase dispersa rigida)
CRISTALLINITÀ DEI POLIMERI

Temperature

No Gaseous State

Viscoelastic liquid

Crystallization

Semicrystalline Solid

Glass Transition

Melting

Glassy Solid
CONSIDERAZIONI GENERALI

- La densità di un materiale cristallino è normalmente compresa tra quella di un cristallo puro e un polimero amorfo
- il grado di cristallinità, la dimensione e l’arrangiamento spaziale dei cristalliti in un polimero semicristallino ha effetto sulle proprietà fisiche e meccaniche

- Fattori che influenzano la velocità e la percentuale di cristallinità:
 1) velocità di raffreddamento
 2) presenza di orientazione nel fuso
 3) temperatura del fuso
 4) tatticità e massa molare del polimero
 5) grado di ramificazione della catena
 6) presenza di additivi (agenti nucleanti…)

Perchè e come cristallizzano i polimeri?

Termodinamica $G = H - TS$
REQUISITI PER LA CRISTALLIZZAZIONE

1. **Regolarità costituzione** – unità ripetenti delle stesso tipo e concatenamento invariante

2. **Regolarità configurazione** – stereoisomeria di doppi legami o di atomi di carbonio asimmetrici

3. **Regolarità conformazione allo stato cristallino** – gli angoli di rotazione interna che definiscono la struttura acquistano, nel passaggio di fase, valori ben definiti affinché la macromolecola soddisfi ai principi di minima energia interna
Se il cambiamento entalpico ΔH_m (calore latente) è maggiore del prodotto della T di fusione per il cambiamento entropico (da stato disordine del fuso all’ordine delle catene) la cristallizzazione sarà termodinamicamente favorita (valida per processi quasi statici)

...in realtà la cinetica e la velocità di crescita dei nuclei controlla la cristallizzazione (es. polimeri vetrosi amorfi con fusi raffreddati velocemente)

- Cristalli polimerici da soluzioni polimeriche diluite
DETERMINAZIONE DELLA STRUTTURA CRISTALLINA

-Solidi cristallini: Array tridimensionali di atomi
- Polimeri: celle unitarie impacchettate (10-100 atomi per cella, arrangiamento spaziale controllato da forze di Wan der Waals - cristalli con proprietà fisiche anisotrope
 Diffrazione raggi X
X-ray Diffraction

![Diagram of X-ray diffraction patterns with labels (a), (b), (c) and a measure intensity inset.](Image)
\[n\lambda = 2d\sin(\theta) \]

dove:

\(\theta \) (theta) è l’angolo che il fascio incidente forma col piano cristallino,

\(\lambda \) (lambda) è la lunghezza d’onda della radiazione

\(d \) è la distanza tra due piani adiacenti.
Debora Puglia

STRUTTURE CRISTALLINE POLIMERICHE

- È necessario che le catene polimeriche siano lineari o con ramificazioni limitate
- Tatticità: polimeri isotattici e sindiotattici cristallizzano a differenza degli atattici

Polimorfismo = diverso impacchettamento

The unit cell contains segments of different chains.
Polymer Crystallinity

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
 Chain folded structure
Polimeri semicristallini

CRISTALLIZZAZIONE DAL FUSO

Spherulite

MELT

IPP Spherulite grown from a 10% IPP, 90% APP mixture

Structure of a spherulite
Polymer Crystallinity

Polymers rarely 100% crystalline
- Too difficult to get all those chains aligned

- % Crystallinity:
 -- $T\Delta S$ increases with % crystallinity.
 -- Annealing causes crystalline regions to grow.

Adapted from Fig. 14.11, Callister 6e.
(Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1985.)
Microstructure

Spherulite

Extensive folding and close packing of the polymer chain in sheets called lamella
Polymer Crystal Forms

- **Spherulites** – fast growth – forms lamellar (layered) structures

Adapted from Fig. 14.13, Callister 7e.
Spherulites – crossed polarizers

Maltese cross

Adapted from Fig. 14.14, Callister 7e.
Spherulites – TEM

lamellar crystallites 10 nm thick extend radially
Interchain Distance in Polymer Crystals

≈ 5 Å
5 x 10^4 μm
5 x 10^-8 cm

Solution Grown Single Crystal

≈ 1.5 x 10^5 Å
15 μm
1.5 x 10^-3 cm

Growing Spherulite

≈ 1 x 10^6 Å
100 μm
1 x 10^-2 cm
METODI PER LO STUDIO DELLA CRISTALLINITÀ DEI POLIMERI

DENSITÀ

WAXS

ANALISI CALORIMETRICA
La cristallizzazione di un polimero dal fuso è accompagnata da una riduzione del volume specifico. Da misurazioni di densità è possibile risalire alla frazione cristallina in volume ed in massa.

\[
V = V_c + V_a
\]

\[
W = W_c + W_a
\]

\[
\rho V = \rho_c V_c + \rho_a V_a
\]

\[
X_c = \frac{W_c}{W} = \frac{\rho_c V_c}{\rho V}
\]

\[
\frac{V_c}{V} = \left(\frac{\rho - \rho_a}{\rho_c - \rho_a} \right) = \Phi_c
\]

Frazione in volume di cristalli

\[
X_c = \frac{\rho_c \left(\frac{\rho - \rho_a}{\rho_c - \rho_a} \right)}{\rho}
\]

Frazione in massa di cristalli
GRADO DI CRISTALLINITÀ

La cristallizzazione dei polimeri **non è mai completa**
Coesistono sempre zone amorfe e zone cristalline separate da interfacce di spessore infinitesimo.
L’ipotesi principale a tutti i metodi di misura è che le zone cristalline siano perfette e che le proprietà estensive di ogni singola fase siano indipendenti dalla presenza e quantità relativa dell’altra.
Cioè i contributi delle due fasi alle proprietà misurate siano **additivi**

\[P = P_c + P_a \]

operando sulle grandezze specifiche

\[p = x p_c + (1 - x) p_a \]

dove \[x = \frac{M_c}{M} \] è il grado di cristallinità ponderale
\[x = \frac{p_a - p}{p_a - p_c} \]

x si determina noti p, p_a e p_c
METODI DI MISURA DELLA CRISTALLINITA’

- Dilatometria e densimetria
- Diffrazione dei raggi X
- Calorimetria

DILATOMETRIA E DENSIMETRIA

Assumendo l’ additività dei volumi delle due fasi

\[x = \frac{V_a - V}{V_a - V_c} = \frac{\rho_c}{\rho} \left(\frac{\rho - \rho_a}{\rho_c - \rho_a} \right) \]

dove \(v, v_a \) e \(v_c \) (\(r, r_a \) e \(r_c \)) sono i volumi specifici (densità) dei campioni, del polimero amorfo e cristallino.
\(x \) si ricava da misure dilatometriche o di densità.
La maggiore difficoltà è di avere i valori di \(v_a \) e \(v_c \).

\(v_c \) si può ricavare dalle dimensioni della cella elementare del polimero cristallino e dalla conoscenza del numero di unità monomeriche contenute in essa
\(v_a \) spesso si ottiene da misure sul polimero raffreddato bruscamente dal fuso (temprato)
METODI PER LO STUDIO DELLA CRISTALLINITÀ DEI POLIMERI

[DENSITÀ]

[WAXS]

[ANALISI CALORIMETRICA]
DIFRATTOMETRIA A RAGGI X

Legge di Bragg:

\[n \lambda = 2 d \sin \theta \]

\(\lambda = \) lunghezza d’onda della radiazione
\(d = \) distanza tra i piani paralleli dei cristalli
\(n = \) numero intero

spettro di diffrazione di raggi X
di polipropilene isotattico semicristallino
E’ possibile determinare il grado di cristallinità dalle aree relative dei picchi dei cristalli e della zona amorfa (da curva WAXS di un polimero completamente amorfo)

\[X_c = \frac{A_c}{(A_a + A_c)} \]
METODI PER LO STUDIO DELLA CRISTALLINITA’ DEI POLIMERI

DENSITÀ’

WAXS

ANALISI CALORIMETRICA
CALORIMETRIA

h, h_a e h_c sono le entalpie specifiche del campione, del polimero amorfo e cristallino perfetto rispettivamente.

\[x_H = \frac{h_a - h}{h_a - h_c} = \frac{\Delta h}{\Delta h_\infty} \]

\[\Delta h_\infty = h_a - h_c \]

\[\Delta h = h_a - h \]

Rappresentazione schematica dell’andamento della entalpia con la temperatura per un sistema polimerico.
DSC (Differential Scanning Calorimeter)
DSC (Differential Scanning Calorimeter)

• Schema costruttivo:

• Principio di funzionamento:

Flusso termico necessario a mantenere alla stessa T il campione ed il riferimento, quando questi vengono riscaldati a velocità controllata (analisi dinamica) o mantenuti ad una T predefinita (analisi isoterma)

\[\dot{H} = \frac{dH}{dt} \implies \text{Calore sviluppato all'istante } t : \Delta H = \int_0^t \dot{H} \, dt \]

\[[\Delta H] = J/g \quad (\text{dividendo per la massa del campione}) \]
1. **TRANSIZIONE VETROSA** (T_g):

 Stato vetroso → Stato gommoso
 Varia il calore specifico (C_p)

2. **CRIStALLIZZAZIONE** (T_c):

 Processo esoterico (struttura ordinata più stabile)

3. **FUSIONE** (T_m):

 Processo endotermico (si deve distruggere un assetto stabile)
OSSERVAZIONI

1. Il passaggio (stato vetroso) → (stato gommoso) non è netto: si hanno fenomeni di scorrimento per la fluidificazione della fase amorfa, ma permane la fase cristallina (⇒ comportamento semirigido!)

2. Non tutti i polimeri cristallizzano (catene ramificate o legami rigidi impediscono il ripiegamento ⇒ solo T_g!)

3. I polimeri sempre amorfi possono essere lavorati relativamente poco al di sopra della T_g, mentre i semicristallini devono superare la T_m per perdere il comportamento semirigido

4. Quello appena descritto non rappresenta necessariamente uno svantaggio (es: saldatura con il PEI di due lamine di PEEK)
Prova dinamica su un film di PEI @ 10°C/min

\[\text{PEI} : \quad T_g = 210°C \]

\[\text{(PEEK} : \quad T_g = 145°C \quad ; \quad T_m = 340°C) \]
Cristallizzazione dal freddo e dal fuso

- **Cold crystallization**: fase amorfa (solida) → fase cristall.
 (L’aspetto dei cristalli dipende dalla storia termomeccanica e dalla presenza di impurezze)

- **Melt crystallization**: fase liquida → fase cristallina
 (I cristalli non conservano memoria della storia termomeccanica)

- **Es.**: Polipropilene → La cristallizzazione è visibile solo dal fuso!
 (⇒ A $T_{ambiente}$, c’è già il max grado di cristallinità)
Riscaldamento dinamico di un film di PP
Raffreddamento dinamico di un film di PP

![Graph showing the rate of heat flow versus temperature with Pure PP indicated.](image)
GRADO INIZIALE DI CRISTALLINITÀ

⇒ Il picco esotermico rappresenta in realtà una cristallizzazione residua ⇒ L’area racchiusa dal picco (ΔH\textsubscript{crist.}) è inversamente proporzionale al *grado di cristallinità iniziale*

⇒ Si può modificare questo parametro intervenendo sulla velocità di raffreddamento dal fuso:

\[
\text{Es. : } \begin{cases}
\text{Quenching (\sim 1000°C/min) } & \rightarrow 100\% \text{ fase amorfa} \\
100°C/min & \rightarrow 1\% \text{ cristallinità} \\
50°C/min & \rightarrow 2\% \text{ cristallinità} \\
20°C/min & \rightarrow 5\% \text{ cristallinità}
\end{cases}
\]

\[
\text{(VALORI INDICATIVI!)}
\]
Termogrammi di cristallizzazione dinamica (Raffreddamento di PP a diverse velocità)
A ciascun grado di cristallinità raggiunto corrisponde un determinato calore di fusione. Il comportamento è però **asintotico**.

⇒ Il $\Delta H_{\text{crist.}}^{100\%}$ deve essere estrapolato con una procedura grafica:

\[
X_C^{\text{iniz.}} = \frac{\Delta H_{\text{fus.}} - \Delta H_{\text{crist.}}}{\Delta H_{\text{crist.}}^{100\%}}
\]
CINETICA DEL PROCESSO DI CRISTALLIZZAZIONE

⇒ **LEGGE DI AVRAMI:**

$$X_{CR}(t) = 1 - \exp\left(-z \cdot t^n\right)$$

GRADO DI CRISTALLINITÀ RELATIVO

$$z = z_1 \cdot \exp\left(\frac{E_a}{T - T_g}\right) \times z_2 \cdot \exp\left(\frac{E_a}{T_{m0} - T}\right)$$

$$T_{m0} = \text{Temp. di fusione teorica}$$

$$n = \text{Coefficiente di Avrami (caratterizza nucleazione e crescita)}$$

$$1 - X_{CR} = \exp\left(-z \cdot t^n\right) \Rightarrow \ln\left(1 - X_{CR}\right) = -z \cdot t^n$$

$$\Rightarrow \log\left[-\ln\left(1 - X_{CR}\right)\right] = \log\left(z\right) + n \cdot \log\left(t\right)$$
La legge di Avrami descrive l'evoluzione del g.d.c. relativo:

\[\Delta H_C(t) = \int_0^t \dot{H} \, dt \]

\[X_C = \frac{\Delta H_C}{\Delta H_f} \quad \text{G.D.C. ASSOLUTO} \]

\[X_{CR} = \frac{\Delta H_C}{\Delta H_f} \quad \text{G.D.C. RELATIVO} \]

I parametri della legge di Avrami vengono ricavati da una regressione lineare:

\[\alpha = \arctg(n) \]

\[\log [-\ln(...)] \]
REGRESSIONE LINEARE

Data una serie di punti sperimentali, si determina la retta che minimizza lo scarto tra il valore teorico e quello sperimentale:

\[
\begin{align*}
 \begin{cases}
 y = ax + b & \rightarrow \text{Curva teorica} \\
 (x_i, y_i) & \rightarrow \text{P.ti sperimentali}
 \end{cases}
\]

\[
\Rightarrow \begin{cases}
 \text{SCARTO: } y_i - (ax_i + b) \\
 \text{SCARTO QUADRATICO: } [y_i - (ax_i + b)]^2
\end{cases}
\]

Dopo aver sommato tutti gli scarti quadratici tra loro, si determinano i valori di \(a\) e \(b\) che minimizzano la sommatoria

\[
\log \left[-\ln(...) \right] \quad \log(t) \quad y = ax + b
\]
CRESCITA DEGLI SFERULITI
- STUDIO AL MICROSCOPIO -
CRESCITA DEGLI SFERULITI
- ANALISI DELL’ACCRESCIMENTO -
La cinetica di accrescimento degli sferuliti è descritta dalla seguente legge:

\[
\frac{4}{3} \pi N \nu^3 = (z)^n
\]

dove:

\[
\begin{align*}
N & \to \text{densità nucleica (nuclei / } \mu m^3) \\
\nu & \to \text{velocità di crescita del raggio (} \mu m / s) \\
z, n & \to \text{parametri della legge di Avrami}
\end{align*}
\]
Cristallizzazione di un polimero a partire dallo stato fuso

Raffreddamento lento

Prolungato riscaldamento dallo stato vetroso amorfo

Lavorazione a freddo
Temperatura di fusione (T_m)

Fattori che influenzano la temperatura di fusione

- **STRUTTURA CHIMICA**
 - Attrazioni intercatena
 - Flessibilità/ rigidità della catena
 - Gruppi laterali
- **Presenza di DILUENTI**
- **Effetto COPOLIMERO**
- **PESO MOLECOLARE**

- terminali di catena e ramificazioni sono impurità che abbassano la T di fusione dei cristalli polimerici

- I FATTORI CHE INFLUENZANO LA T_m POSSONO CAMBIARE ANCHE LA T DI TRANSIZIONE VETROSA \(\rightarrow \) Questi due parametri non possono essere variati indipendentemente
Effetto su T_m
Effetto della struttura chimica: forze intermolecolari

$$\Delta G_f = \Delta H_f - T \cdot \Delta S_f$$

$$\Delta G_f = 0$$

$$T_m = \frac{\Delta H_f}{\Delta S_f} = \frac{H_{liq} - H_{crist}}{S_{liq} - S_{crist}}$$

Forze di dispersione ~ 0.2 kcal/mol
Legame ad idrogeno ~ 5 kcal/mol

La disposizione regolare delle catene nei domini cristallini massimizza le forze di attrazione
La presenza di gruppi polari CONH da luogo a
legami idrogeno intermoleculari che stabilizzano il cristallo

- Il valore di Tm per una stessa serie di poliammidi è ridotta dal numero di gruppi \(CH_2 \) tra i legami ammide
Effetto su T_m
Effetto della struttura chimica: flessibilità di catena e presenza di gruppi laterali

\[T_m = \frac{\Delta H_f}{\Delta S_f} = \frac{H_{liq} - H_{crist}}{S_{liq} - S_{crist}} \]

\[\Delta S_f = k \left(\ln \Omega_{liq} - \ln \Omega_{crist} \right) \]

La presenza di un gruppo fenilene aumenta la rigidezza di catena e aumenta T_m → gruppi come -O- e CO-O- aumentano la flessibilità e abbassano T_m
Effetto su T_m: presenza di diluenti; effetto copolimero; peso molecolare

Diminuzione di T_m

(1) Presenza di DILUENTI (solvente)
$S_{fuso} < S_{soluzione}$

(2) Effetto COPOLIMERO
Diminuzione della simmetria di catena
Incorporazione di irregolarità

(3) PESO MOLECOLARE
Gruppo terminale ~ Comonomero

\[
\begin{align*}
1 & - 1 \\
\frac{1}{T_m} & - \frac{1}{T_m^o} \propto \left[\Phi_s - \Phi_s \chi \right] \\
\frac{1}{T_m} & - \frac{1}{T_m^o} \propto - \ln X_A \\
\frac{1}{T_m} & - \frac{1}{T_m^o} \propto \frac{1}{M_n}
\end{align*}
\]
Polimeri amorfi

La disposizione delle catene nello spazio è casuale, priva di un ordine tridimensionale a largo raggio.

Polimeri semicristallini

Oltre a zone amorfe (disordinate) vi sono zone in cui è presente un ordine nella disposizione delle catene nello spazio.

strutture planari, comunemente indicate come “lamelle” (disposizione ordinata di segmenti di catena).

Una stessa catena può, per ripiegamento, rientrare in una lamella che già ne contiene un segmento o far parte di una lamella distinta.
I polimeri amorfi

Caratterizzati da una sola temperatura, denominata Temperatura di transizione vetrosa Tg.

Per $T < T_g$ il materiale è detto vetroso ed è caratterizzato da una mobilità molecolare limitata.

Per $T > T_g$ il materiale è gommoso:

possibilità di movimenti delle catene a lungo raggio

Per temperature più elevate ($T \gg T_g$) si ha libertà di scorrimento relativo delle catene (materiale fluido).

La transizione vetrosa è una transizione cinetica, alla quale non corrisponde alcun cambiamento nella disposizione degli atomi / molecole nello spazio, come invece avviene, ad esempio, nel passaggio di stato da solido cristallino a liquido.

In corrispondenza della transizione vetrosa aumenta la mobilità delle catene che costituiscono il polimero, che, in ogni modo, conserva il disordine strutturale caratteristico dello stato amorfo.

- limite superiore di uso per polimeri ad alta Tg (PS, PMMA)
- limite inferiore di uso per polimeri a bassa Tg (Poliisoprene, polibutadiene)
DEFINIZIONE
Passaggio da uno stato vetroso ad uno stato gommoso

STRUTTURA
- liquidi polimerici congelati
- diffrazione raggi X: anello diffuso con perdita di ordine cristallino
- regioni microscopiche ordinate (SEM, superfici di frattura)
- recupero cristallinità per annealing di un polimero quenziato (PET, PP isotattico)

- rapido aumento di rigidezza quando la T è ridotta sotto la Tg
- cambiamento del coefficiente di espansione termica, del volume specifico, conducibilità elettrica, permeabilità ai gas, indice di rifrazione = metodologia di misura della Tg attraverso la variazione di volume specifico con T
Tg = punto di incontro delle due rette estrapolate
- dipende dalla velocità con cui si raffredda (+ bassa la velocità, + basso il valore)
- Tg anche in un semicristallino, ma cambiamento di proprietà meno marcata
Tabella 1: Transizione vetrosa e fusione

<table>
<thead>
<tr>
<th>Polimero</th>
<th>T_m ($^\circ$C)</th>
<th>T_g ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polietilene (bassa densità)</td>
<td>115</td>
<td>-120</td>
</tr>
<tr>
<td>Polietilene (alta densità)</td>
<td>135</td>
<td>-120</td>
</tr>
<tr>
<td>Poliviniliduro</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Polipropilene</td>
<td>170</td>
<td>-15</td>
</tr>
<tr>
<td>Poliacrilonitrile</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Polistrene</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Polimetilmetacrilato</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Acetaliche</td>
<td>180</td>
<td>-85</td>
</tr>
<tr>
<td>Nylon 66</td>
<td>265</td>
<td>50</td>
</tr>
<tr>
<td>Policarbonato</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>Poliestere</td>
<td>255</td>
<td>75</td>
</tr>
<tr>
<td>Silicone</td>
<td></td>
<td>-120</td>
</tr>
<tr>
<td>Poliutadiene</td>
<td></td>
<td>-90</td>
</tr>
<tr>
<td>Polisoprene</td>
<td></td>
<td>-70</td>
</tr>
<tr>
<td>Poliisoprene</td>
<td></td>
<td>-50</td>
</tr>
</tbody>
</table>

Tabella 2: Dipendenza del valore della T_g del poliossiciclobutano dalla scala dei tempi usati per la sua determinazione.

<table>
<thead>
<tr>
<th>Tipo di prova</th>
<th>Tempi (s)</th>
<th>T_g ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielettriche</td>
<td>10^{-3}</td>
<td>32</td>
</tr>
<tr>
<td>Vibrazioni meccaniche</td>
<td>10^{-2}</td>
<td>25</td>
</tr>
<tr>
<td>Trazione</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Dilatometria</td>
<td>10^2</td>
<td>7</td>
</tr>
</tbody>
</table>

Transizioni termiche - Considerazioni termodinamiche

\[
\begin{align*}
\left[\frac{\partial G}{\partial T} \right]_p &= -S \\
\left[\frac{\partial(G/T)}{\partial(1/T)} \right]_p &= H \\
\left[\frac{\partial G}{\partial P} \right]_T &= \nu \\
\frac{\partial^2 G}{\partial T^2} &= \left[\frac{\partial S}{\partial T} \right]_p = \frac{C_p}{T} \\
\frac{\partial^2 G}{\partial P^2} &= \left[\frac{\partial V}{\partial P} \right]_T = -\kappa \cdot \nu \\
\frac{\partial}{\partial T} \left[\frac{\partial(G/T)}{\partial(1/T)} \right]_p &= \left[\frac{\partial H}{\partial T} \right]_p = C_p \\
\frac{\partial}{\partial T} \left[\frac{\partial G}{\partial P} \right]_T &= \left[\frac{\partial V}{\partial T} \right]_p = \alpha \cdot \nu
\end{align*}
\]

\(C_p\): calore specifico, \(\kappa\): compressibilità; \(\alpha\): coefficiente di espansione termica
Transizioni termiche - Considerazioni termodinamiche

Transizioni di PRIMO ordine
Fusione
Cristallizzazione

Transizioni di SECONDO ordine
Transizione vetrosa

Illustrazione schematica di relazioni volume-temperatura tipiche di una sostanza ordinaria (a) di un polimero (b). Sono indicati i diversi stati fisici nei campi delimitati dalle temperature di transizione vetrosa, T_g, e di fusione, T_m.
Polivinilacetato: Effetto della velocità di raffreddamento
0.02hr/step and 100hr/step
Fattori che influenzano la temperatura di transizione vetrosa

- PESO MOLECOLARE
- STRUTTURA CHIMICA
 Flessibilità/rigidità della catena
 Gruppi laterali rigidi
 Gruppi laterali flessibili
 Attrazioni intermolecolari
 Simmetria della catena
- Presenza di DILUENTI
- Effetto COPOLIMERO
- RETICOLAZIONI
- CRISTALLINITÁ
Effetto del peso molecolare
Effetto del peso molecolare

\[T_g = T_g^\infty - \frac{K}{M} \]

- **(a)**
 - Glass transition temperature (°C)
 - \(M^{-1} \times 10^5 \) vs. \(T_g \)

- **(b)**
 - Glass transition temperature (K)
 - \(M \times 10^{-3} \) vs. \(T_g \)

- **Diagram**
 - Poliesteri
 - Formula: \(380.6 - \frac{7.187 \times 10^4}{M_w} \)
Effetto su Tg: flessibilità della catena

Facilità di rotazione intorno ai legami della catena principale

<table>
<thead>
<tr>
<th>Polymers</th>
<th>Repeat unit</th>
<th>T_g/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly(dimethylsiloxane)</td>
<td>$\begin{array}{c} \text{CH}_3 \ \text{Si} - \text{O} - \text{Si} \ \text{CH}_3 \end{array}$</td>
<td>150</td>
</tr>
<tr>
<td>polyethylene</td>
<td>$\begin{array}{c} \text{CH}_2 - \text{CH}_2 \end{array}$</td>
<td>180</td>
</tr>
<tr>
<td>cis-polybutadiene</td>
<td>$\begin{array}{c} \text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 \end{array}$</td>
<td>188</td>
</tr>
<tr>
<td>poly(oxyethylene)</td>
<td>$\begin{array}{c} \text{CH}_2 - \text{CH}_2 - \text{O} \end{array}$</td>
<td>206</td>
</tr>
<tr>
<td>Poly(phenylene oxide)</td>
<td>$\begin{array}{c} \text{O} \end{array}$</td>
<td>356</td>
</tr>
<tr>
<td>Poly(arylene sulphone)</td>
<td>$\begin{array}{c} \text{O} - \text{O} - \text{SO}_2 \end{array}$</td>
<td>523</td>
</tr>
<tr>
<td>poly(p-xyylene)</td>
<td>$\begin{array}{c} \text{CH}_2 - \text{CH}_2 \end{array}$</td>
<td>about 553</td>
</tr>
</tbody>
</table>

Flexible

Which would have the higher T_g?

Stiff

Increasing Chain Stiffness

Poly(dimethylsiloxane)
$T_g \approx -120 ^\circ C$

Polyethylene
$T_g \approx -80 ^\circ C$

Poly(phenylene oxide)
$T_g \approx +200 ^\circ C$
Effetto su Tg:

- presenza di gruppi laterali di elevata rigidità diminuisce la mobilità per effetto sterico
- presenza di gruppi laterali flessibili

![Graph showing Tg vs. number of carbon atoms in R](image)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Chemical Structure</th>
<th>T_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene</td>
<td>$\left{ \text{CH}_2\text{CH}_2 \right}_n$</td>
<td>$\approx -80^\circ\text{C}$</td>
</tr>
<tr>
<td>Atactic Polypropylene</td>
<td>$\left{ \text{CH}_3 \right}_n$</td>
<td>$\approx -10^\circ\text{C}$</td>
</tr>
<tr>
<td>Atactic Polystyrene</td>
<td>$\left{ \text{CH}_2\text{CH} \right}_n$</td>
<td>$\approx 100^\circ\text{C}$</td>
</tr>
<tr>
<td>Atactic Poly(α-methyl styrene)</td>
<td>$\left{ \text{CH}_2\text{C} \right}_n$</td>
<td>$\approx 175^\circ\text{C}$</td>
</tr>
<tr>
<td>Atactic Poly(i-vinyl naphthalene)</td>
<td>$\left{ \text{CH}_2\text{CH} \right}_n$</td>
<td>$\approx 135^\circ\text{C}$</td>
</tr>
<tr>
<td>Atactic Poly(vinyl biphenyl)</td>
<td>$\left{ \text{CH}_2\text{CH} \right}_n$</td>
<td>$\approx 145^\circ\text{C}$</td>
</tr>
</tbody>
</table>
Presenza di legami intermolecolari e simmetria di catena

La presenza di gruppi polari tende ad alzare la T_g
- CH₂ - CH₂ -
Polyethylene \(T_g \sim -80^0C \)

- CH₂ - CH -
CH₃
Atactic Polypropylene \(T_g \sim -10^0C \)

- CH₂ - CH -
Atactic Polystyrene \(T_g \sim 100^0C \)

- CH₂ - CH -
- CH₂ - C -
CH₃
Atactic Polystyrene \(T_g \sim 175^0C \)
Atactic Poly(α-methyl styrene)

- CH₂ - CH -
Atactic Poly(1-vinyl naphthalene) \(T_g \sim 135^0C \)

- CH₂ - CH -
Atactic Poly(vinyl biphenyl) \(T_g \sim 145^0C \)
Non è possibile controllare la Tg e Tm indipendentemente per gli omopolimeri (possibilità di controllo con i copolimeri)

\[T_{g_{CO}} = T_{g_A} \omega_A + T_{g_B} \omega_B \]

sovрастима

\[
\frac{1}{T_g^{AB}} = \frac{w_A}{T_g^A} + \frac{w_B}{T_g^B}
\]

Equazione Fox-Flory

Equazione Gordon-Taylor

\[
(T_{g_{AB}} - T_g^A) \cdot w_A + K \cdot (T_{g_{AB}} - T_g^B) \cdot w_B = 0
\]

\[
K = \frac{\alpha_t^B - \alpha_g^B}{\alpha_t^A - \alpha_g^A}
\]

Copolimeri statistici metilmetacrilato (M)/fenilacrilati
\[\frac{1}{T_g} = \frac{W_1}{T_{g_1}} + \frac{W_2}{T_{g_2}} \]
RAMIFICAZIONI

\[T_g = T_g^\infty - \frac{y\rho N_A \theta}{\alpha_f \bar{M}_n} \]

- valida per n° di ramificazioni basse
- \(T_g \) di una catena che possiede y catene laterali
- \(T_g^\infty = \) transizione vetrosa di una catena lineare di infinita massa molare
- ramificazioni per catena = \((y-2)\)
RETICOLAZIONE

\[T_g = T_g^\infty - \frac{\cos t}{M_n} + k\nu \]

\[\nu = \text{Numero di punti di reticolazione per grammo} \]
PRESENZA DI DILUENTI (PLASTIFICANTI)

Miscela
Poli(vinil cloruro)(PVC) / Dibutilftalato (DBP)

Polymer + Solvent or Plasticizer